Math, asked by pooja1356, 7 months ago

if 4^3x-1/16=64 find the value of x

Answers

Answered by pulakmath007
0

The value of x = 2

Correct question : \displaystyle \sf{   \frac{{4}^{3x - 1}}{16}   = 64 } find the value of x

Given :

\displaystyle \sf{   \frac{{4}^{3x - 1}}{16}   = 64 }

To find :

The value of x

Formula :

We are aware of the formula on indices that

 \displaystyle \sf{\frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{   \frac{{4}^{3x - 1}}{16}   = 64 }

Step 2 of 2 :

Find the value of x

\displaystyle \sf{   \frac{{4}^{3x - 1}}{16}   = 64 }

\displaystyle \sf{ \implies \frac{{4}^{3x - 1}}{ {4}^{2} }   =  {4}^{3} }

\displaystyle \sf{ \implies {4}^{3x - 1 - 2}   =  {4}^{3} }\:  \:  \: \bigg[ \:  \because \:\frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \bigg]

\displaystyle \sf{ \implies {4}^{3x - 3}    =  {4}^{3} }

\displaystyle \sf{ \implies 3x - 3 = 3}

\displaystyle \sf{ \implies 3x  = 3 + 3}

\displaystyle \sf{ \implies 3x  = 6}

\displaystyle \sf{ \implies x  =  \frac{6}{3} }

\displaystyle \sf{ \implies x  =  2 }

Hence the required value of x = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

#SPJ3

Similar questions