Math, asked by bfbbfbd25626, 7 months ago

if (4.6) divides the distance between the paints (X,Y)
and (5,7) internally in the ratio 2:1. Finch
the value of ond x y.​

Answers

Answered by VishnuPriya2801
65

Answer:-

Given:

(4 , 6) divides the line segment joining the points (x , y) & (5 , 7) internally in the ratio 2 : 1.

using section formula,

i.e., The co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) , (x₂ , y₂)

internally in the ratio m : n are :

  \sf \large \: (x \:  ,\: y) =  \bigg( \dfrac{mx_2 + nx_1}{m + n}  \:  \: , \:  \:  \dfrac{my_2 + ny_1}{m + n}  \bigg)

Let,

  • x = 4

  • y = 6

  • x₁ = x

  • y₁ = y

  • x₂ = 5

  • y₂ = 7

  • m = 2

  • n = 1

Hence,

 \implies \sf \: \: (4\: , \: 6) =  \bigg( \dfrac{(2)( 5)+ (1)(x)}{2 + 1}  \:  \:,  \:  \:  \dfrac{(2)(7) + (1)(y)}{2 + 1}  \bigg) \\  \\ \implies \sf \: \: (4\: , \: 6) =  \bigg( \dfrac{10+ x}{3}  \:  \: , \:  \:  \dfrac{y + 14}{3}  \bigg) \\  \\ \implies \sf \:4 =  \frac{10 + x}{3}  \\  \\ \implies \sf \:12 = 10 + x \\  \\ \implies \sf \:12 - 10 = x \\  \\ \implies  \boxed{\sf \:x = 2}

Similarly,

 \: \implies \sf \:6 =  \frac{14 + y}{3}  \\  \\ \implies \sf \:18 = 14 + y \\  \\ \implies \sf \:18 - 14 = y \\  \\ \implies  \boxed{\sf \:y = 4}

(x , y) = (2 , 4).

Answered by sara122
3

Answer:

\huge\underbrace\mathfrak\color{lime}{ †\: Solution:–}

Given:

(4 , 6) divides the line segment joining the points (x , y) & (5 , 7) internally in the ratio 2 : 1.

using section formula,

i.e., The co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) , (x₂ , y₂)

internally in the ratio m : n are :

\sf \large \: (x \: ,\: y) = \bigg( \dfrac{mx_2 + nx_1}{m + n} \: \: , \: \: \dfrac{my_2 + ny_1}{m + n} \bigg)(x,y)=(

m+n

Let,

  • x = 4
  • y = 6
  • x₁ = x
  • y₁ = y
  • x₂ = 5
  • y₂ = 7
  • m = 2
  • n = 1

Hence,

$$\begin{lgathered}\implies \sf \: \: (4\: , \: 6) = \bigg( \dfrac{(2)( 5)+ (1)(x)}{2 + 1} \: \:, \: \: \dfrac{(2)(7) + (1)(y)}{2 + 1} \bigg) \\ \\ \implies \sf \: \: (4\: , \: 6) = \bigg( \dfrac{10+ x}{3} \: \: , \: \: \dfrac{y + 14}{3} \bigg) \\ \\ \implies \sf \:4 = \frac{10 + x}{3} \\ \\ \implies \sf \:12 = 10 + x \\ \\ \implies \sf \:12 - 10 = x \\ \\ \implies \boxed{\sf \:x = 2}\end{lgathered}$$

Similarly,

$$\begin{lgathered}\: \implies \sf \:6 = \frac{14 + y}{3} \\ \\ \implies \sf \:18 = 14 + y \\ \\ \implies \sf \:18 - 14 = y \\ \\ \implies \boxed{\sf \:y = 4}\end{lgathered}$$

∴ (x , y) = (2 , 4).

Similar questions