if (4.6) divides the distance between the paints (X,Y)
and (5,7) internally in the ratio 2:1. Finch
the value of ond x y.
Answers
Answer:-
Given:
(4 , 6) divides the line segment joining the points (x , y) & (5 , 7) internally in the ratio 2 : 1.
using section formula,
i.e., The co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) , (x₂ , y₂)
internally in the ratio m : n are :
Let,
- x = 4
- y = 6
- x₁ = x
- y₁ = y
- x₂ = 5
- y₂ = 7
- m = 2
- n = 1
Hence,
Similarly,
∴ (x , y) = (2 , 4).
Answer:
Given:
(4 , 6) divides the line segment joining the points (x , y) & (5 , 7) internally in the ratio 2 : 1.
using section formula,
i.e., The co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) , (x₂ , y₂)
internally in the ratio m : n are :
\sf \large \: (x \: ,\: y) = \bigg( \dfrac{mx_2 + nx_1}{m + n} \: \: , \: \: \dfrac{my_2 + ny_1}{m + n} \bigg)(x,y)=(
m+n
Let,
- x = 4
- y = 6
- x₁ = x
- y₁ = y
- x₂ = 5
- y₂ = 7
- m = 2
- n = 1
Hence,
$$\begin{lgathered}\implies \sf \: \: (4\: , \: 6) = \bigg( \dfrac{(2)( 5)+ (1)(x)}{2 + 1} \: \:, \: \: \dfrac{(2)(7) + (1)(y)}{2 + 1} \bigg) \\ \\ \implies \sf \: \: (4\: , \: 6) = \bigg( \dfrac{10+ x}{3} \: \: , \: \: \dfrac{y + 14}{3} \bigg) \\ \\ \implies \sf \:4 = \frac{10 + x}{3} \\ \\ \implies \sf \:12 = 10 + x \\ \\ \implies \sf \:12 - 10 = x \\ \\ \implies \boxed{\sf \:x = 2}\end{lgathered}$$
Similarly,
$$\begin{lgathered}\: \implies \sf \:6 = \frac{14 + y}{3} \\ \\ \implies \sf \:18 = 14 + y \\ \\ \implies \sf \:18 - 14 = y \\ \\ \implies \boxed{\sf \:y = 4}\end{lgathered}$$
∴ (x , y) = (2 , 4).