Math, asked by vibek2535, 10 months ago

If (4,a),(6,11) and (a,13) are collinear,then find the value of a?

Answers

Answered by Anonymous
9

Question

→If (4,a),(6,11) and (a,13) are collinear,then find the value of a?

Answer:-

 \implies \:  \boxed{a \:  = 10 \: or \: 7}

Step - by - step explanation→

Used property→

Here we used property of collinear points .

  let \: \:  points \: (x_1, \: y_1) \: (x_2 \: ,y_2) \: (x_3 ,\: y_3) are \:  \\ collinear \: .then \\ 0 =  \frac{1}{2}  \bigg(x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \bigg) \\

Solution :-

Given points are (4,a) ,(6,11) ,(a,13).

Let ,

x_1 = 4 ,\: y_1 = a \\  \\ x_2 \:  = 6 ,\: y_2 = 11 \\  \\ x_3 = a, \: y_3 = 13

According to the question,

Points are collinear then,

0 =  \frac{1}{2} \bigg( 4(11 - 13) + 6(13 - a) + a(a - 11) \bigg) \\  \\ 0 =  - 8 + 78 - 6a +  {a}^{2}  - 11a \\  \\ 0 =  {a}^{2}  - 17a  + 70 \\  \\ 0 =  {a}^{2}  - (10 + 7)a + 70 \\  \\ 0 =  {a}^{2}  - 10a - 7a + 70 \\  \\ 0 = a(a - 10) - 7(a - 10) \\  \\ 0 = (a - 10)(a - 7) \\  \\  \star \: case \: (1) \\  if \:  \:  \\  \implies \: (a - 10) = 0 \\  \\   \implies \:  \boxed{a = 10 }\\  \\  \star \: case \: (2) \\ if \\  \implies \: (a - 7) = 0 \\  \\  \implies \: \boxed{ a = 7}

Hence,

the \: value \: of \: a \: is \: 10 \: or \: 7.

Similar questions