Math, asked by summer2015514, 9 months ago

if 4 cos²x -3 =0 and 0<=X<=90 prove that sin 3x = 3 sin x - 4 sin³x​

Answers

Answered by has42000
1

Answer:

Step-by-step explanation:

  4 cos²x  - 3 =0

  cos²x  = \frac{3}{4}

  cosx = \frac{\sqrt{3} }{2}

        x = 30° ( from trigonometric angle table)

now,

L.H.S. = sin3x = sin3(30) = sin90 = 1

R.H.S. = 3 sin x - 4 sin³x​

            = 3sin(30) - 4 sin³ (30)

            = (3 x \frac{1}{2} ) - 4((\frac{1}{2})^{3}

            = \frac{3}{2}  - 4*\frac{1}{8}

            = \frac{3}{2}  - \frac{1}{2}

            = 1

LHS = RHS

Hence sin 3x = 3 sin x - 4 sin³x​  proved....

Similar questions