If 4 cot 0 = 3, show that [sin 0 - cos 0/sin 0+cos 0]=1/7
Answers
Answer:
Answer:
1/7
Step-by-step explanation:
4 cotA = 3 → cotA = 3/4
\begin{gathered} \small{ \implies \frac{sin \theta - cos\theta}{ sin \theta + cos\theta} } \\ \\ \implies \frac{ \frac{sin \theta - cos\theta}{sin \theta} }{ \frac{sin \theta + cos\theta}{sin \theta}} \\ \\ \implies \frac{ \frac{sin \theta}{sin \theta} - \frac{cos\theta}{sin \theta} }{ \frac{sin \theta}{sin\theta} + \frac{cos\theta}{sin \theta} } \\ \\ \implies \small{ \frac{1 - cot\theta}{1 + cot \theta}} \end{gathered}
⟹
sinθ+cosθ
sinθ−cosθ
⟹
sinθ
sinθ+cosθ
sinθ
sinθ−cosθ
⟹
sinθ
sinθ
+
sinθ
cosθ
sinθ
sinθ
−
sinθ
cosθ
⟹
1+cotθ
1−cotθ
\begin{gathered}\implies \frac{1-\frac{3}{4}}{1+\frac{3}{4}} \\\\\implies \frac{\frac{4-3}{4}}{\frac{1+3}{4}} \\\\\implies \frac{1}{7}\end{gathered}
⟹
1+
4
3
1−
4
3
⟹
4
1+3
4
4−3
⟹
7
1
Proved.
Step-by-step explanation:
please mark me as Brainliest
hehehehehehehehehehehehehe