Math, asked by sanu40407762, 1 month ago

If (4-k )x² + 2(k +2 )x + (8k + 1 ) = 0 has equal roots, then k is​

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       \text{The given quadratic equation is }(4-k)x^{2} + 2(k+2)x + (8k+1) = 0 \text{ has}\\\text{equal roots}

\implies \text{The discriminant}(\delta) \text{ of the equation} = 0

       \text{We know that the discriminant}(\delta) \text{ of an equation of the form }ax^{2} +bx + c \\\text{is }b^{2} - 4ac

       \text{In our case:}

       a = (4-k)

       b = 2(k+2)

       c = (8k+1)

\implies \delta = [2(k+2)]^{2} - 4(4-k)(8k+1) = 0

       \text{Simplifying...}

\implies \delta = 4(k+2)^{2} - 4(4-k)(8k+1) = 0

       \text{We know that }(a+b)^{2} = a^{2} + b^{2} + 2ab

\implies \delta = 4(k^{2} + 4 + 4k) - 4(32k + 4 - 8k^{2} - k) = 0

       \text{Simplifying...}

\implies \delta = 4(k^{2} + 4 + 4k) - 4( - 8k^{2} +31k + 4) = 0

       \text{Taking 4 common and transposing it to R.H.S}

\implies \delta = k^{2} + 4 + 4k  + 8k^{2} -31k - 4 = 0

       \text{Simplifying...}

\implies 9k^{2}  -27k  = 0

       \text{Taking }k \text{ common}

\implies 9k(k  -3) = 0

\implies \boxed{k = 0,3}

Similar questions