Math, asked by jitendradhami13, 6 months ago

If 4 tan A=3 then sinA +CosA is equal to​

Answers

Answered by GangsterTeddy
4

Step-by-step explanation:

tan A=3/4

tanA=p/b=3/4

so h²=p²+b²

h²=9+16

h=5

so sinA=p/h=3/5

cos A=4/5

so sinA+cosA=3/5+4/5=7/5

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) If 4tanA=3 then SinA+CosA is equals to

\mathtt{\huge{\underline{\red{Answer\: :}}}}

\implies\boxed{\bf\red{To \:find \to \: the \: value \: of \: SinA+CosA=??}}

 \ \:  \:  \boxed{ \sf{draw \: a  \: right \: angle \: triangle \: }}

 \:  \:  \:  \: \mathfrak{ {put \: the \: given \: values \: in \: triangle \triangle}}

 \:  \:   \boxed{ \sf{put \: 3 \: in \: opposite \: sides  \: and\: 4 \: in \: adjacent \: sides}}

✪ 3rd sides is not given so use Pythagoras theorem to find hypotenuse

\implies\boxed{\bf\pink{H^2=B^2+P^2}}

\implies\sf{H^2=(4)^2+(3)^2}

\implies\sf{H^2=16+9}

\implies\sf{H=\sqrt25}

\implies\sf{H=5}

As we know that,

\bullet\rm{SinA=\dfrac{opposite \: side}{Hypothenus \: side}=\dfrac{3}{5}}

\bullet\rm{CosA=\dfrac{Adjacent \: side}{Hypothenus \: side}=\dfrac{4}{5}}

\bullet\rm{tanA=\dfrac{Opposite\:side}{Adjacent \: side}=\dfrac{3}{4}}

 \:  \clubsuit\underline{\bf \pink {according \: to \: this \: question}}

\mapsto\rm{SinA+CosA............to find }

\mapsto\bf{Put \: sides\: of \: right \: angle \: triangle \triangle}

\mapsto\rm{SinA+CosA}

\mapsto\rm{\dfrac{3}{5}+\dfrac{4}{5}}

\mapsto\rm{\dfrac{3+4}{5}}

\mapsto\rm{\dfrac{7}{5}}

 \:  \:  \:  \:  \star\boxed { \bf \green{answer \: will \: be \:  \frac{7}{5} }}

Similar questions