Math, asked by abyaan1908, 3 months ago

if 4 tan theta is equal to 3 evaluate 4 sin theta minus cos theta + 1 by 4 sin theta + cos theta minus one​

Answers

Answered by Yuseong
16

Appropriate Question :

If  \sf { 4 \tan \theta = 3} , evaluate  \sf { \dfrac{4\sin \theta - \cos \theta +1 }{ 4\sin \theta + \cos \theta - 1} }.

Required Solution :

Given that,

  • 4 tan θ = 3

So,

 \longmapsto \sf { \tan \theta = \dfrac{3}{4} }

We know that,

 \longmapsto \sf { \tan \theta = \dfrac{Perpendicular}{Base} }

So, we get that :

● Perpendicular = 3

● Base = 4

Now, in order to solve the question we need to find the value of sin θ and cos θ. We know that,

»  \longmapsto \sf { \sin \theta = \dfrac{Perpendicular}{Hypotenuse} }

»  \longmapsto \sf { \cos \theta = \dfrac{Base}{Hypotenuse} }

Finding hypotenuse :

By pythagoras property,

 \longrightarrow \sf { H^2 = B^2 + P^2 }

  • H = Hypotenuse
  • B = Base
  • P = Perpendicular

 \longrightarrow \sf { H^2 = 4^2 + 3^2 }

 \longrightarrow \sf { H^2 = 16 + 9 }

 \longrightarrow \sf { H^2 = 25 }

 \longrightarrow \sf { H = \sqrt{25} }

 \longrightarrow \sf \red{ H = 5 }

Calculating sin θ :

»  \longmapsto \sf { \sin \theta = \dfrac{Perpendicular}{Hypotenuse} }

 \longmapsto \sf { \sin \theta = \dfrac{3}{5} }

Calculating cos θ :

»  \longmapsto \sf { \cos \theta = \dfrac{Base}{Hypotenuse} }

 \longmapsto \sf { \cos \theta = \dfrac{4}{5} }

Substituting the values in given expression ,

\longrightarrow \sf { \dfrac{4\sin \theta - \cos \theta + 1 }{ 4\sin \theta + \cos \theta-1} }

\longrightarrow \sf { \dfrac{4 \times \cfrac{3}{5} - \cfrac{4}{5} + 1}{ 4 \times \cfrac{3}{5} + \cfrac{4}{5} -1}  }

\longrightarrow \sf { \dfrac{\cfrac{4 \times 3}{5} - \cfrac{4}{5} +1 }{ \cfrac{4 \times 3}{5} + \cfrac{4}{5} -1 } }

\longrightarrow \sf { \dfrac{\cfrac{12}{5} - \cfrac{4}{5} +1 }{ \cfrac{12}{5} + \cfrac{4}{5} -1} }

\longrightarrow \sf { \dfrac{\cfrac{12-4}{5} + 1}{ \cfrac{12+4}{5} - 1} }

\longrightarrow \sf { \dfrac{\cfrac{8}{5} +1 }{ \cfrac{16}{5}-1 } }

\longrightarrow \sf { \dfrac{\cfrac{8+5}{5}  }{ \cfrac{16-5}{5} } }

\longrightarrow \sf { \dfrac{\cfrac{13}{5}  }{ \cfrac{11}{5} } }

\longrightarrow \sf { \dfrac{13}{\not{5}} \times \dfrac{\not {5}}{11}  }

\longrightarrow\boxed{ \sf \red { \dfrac{13}{11} } }

Therefore,

 \sf { \dfrac{4\sin \theta - \cos \theta +1 }{ 4\sin \theta + \cos \theta - 1} = \sf \red { \dfrac{13}{11}} }

____________

Know More !

»  \longmapsto \sf { \sin \theta = \dfrac{Perpendicular}{Hypotenuse} }

»  \longmapsto \sf { \cosec \theta = \dfrac{Hypotenuse}{Perpendicular} }

»  \longmapsto \sf { \cos \theta = \dfrac{Base}{Hypotenuse} }

»  \longmapsto \sf { \sec \theta = \dfrac{Hypotenuse}{Base} }

»  \longmapsto \sf { \tan \theta = \dfrac{Perpendicular}{Base} }

»  \longmapsto \sf { \cot \theta = \dfrac{Base}{Perpendicular} }

Similar questions