Math, asked by Dimpy2005, 1 year ago

If 4^x - 4^x-1 = 24, then evaluate (2x)^x.
Plzz help me solve this

Answers

Answered by DevyaniKhushi
1

 {4}^{x}  -  {4}^{x - 1}  = 24 \\  \\   {4}^{x}  -  {4}^{x} \times  {4}^{ - 1}  = 24 \\  \\  {4}^{x} (1 -  {4}^{ - 1}) = 24 \\  \\  {4}^{x}(1 -  \frac{1}{4} ) = 24 \\  \\  {4}^{x} ( \frac{3}{4} ) = 24 \\  \\  {4}^{x}  =  \frac{24}{ \frac{3}{4} }  \\  \\  {4}^{x}  =  \frac{96}{3}  \\  \\  {4}^{x}  = 32 \\  \\  { ({2}^{2} )}^{x}  =  {2}^{5}  \\  \\  {2}^{2x}  =  {2}^{5}  \\  \\ 2x = 5 \\ x = 2.5

Now,

  {2x}^{x} \\  \\ {(2 \times 2.5)}^{2.5} \\   \\  {5}^{2.5}  \\  \\  {5}^{ \frac{25}{10} }  =  {5}^{ \frac{5}{2} }  =  {( {5}^{5} )}^{ \frac{1}{2} }  =  {3125}^{ \frac{1}{2} }  =  \sqrt{3125}  = 25 \sqrt{5}

Similar questions