Math, asked by kanishkaray, 13 hours ago

 If θ = 45°, then 2sinθ is​

Answers

Answered by akush871
0

Answer:

∅= 45°

=2sin45°   ( puting value of sin 45°)

=2*1/√2

=2/√2         (rationalisation )

=2/√2*√2/√2

=(2√2)/2

= √2

         ples mark my answer brilliant

Answered by Anonymous
6

Step-by-step explanation:

~Given

  •  ➳If θ = 45°, then 2sinθ is

~To Find

  • ➳2Sin θ=?

~Solution

~Given That,

  • ➳ θ=45°

➳Thus,

Value of  2sinθcosθ is

{\qquad{\sf{\longmapsto=2 \times sin(45°)cos450 }}}

{\qquad{\sf{ \longmapsto=2 \times (  \frac{1}{2} ){\qquad{\sf \red{= 1}}} }}}

~Therefore,

  • ➳❝2Sin θ=01

 \pink{\rule{7cm}{2cm}}

More To Know

\begin{gathered}\sf \color{aqua}{Trigonometry\: Table}\\ \blue{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \red{\angle A} & \red{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \red{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &\red{ \sf{90}^{ \circ}} \\ \hline \\ \rm \red{sin A} & \green{0} & \green{\dfrac{1}{2}}& \green{\dfrac{1}{ \sqrt{2} }} &\green{ \dfrac{ \sqrt{3}}{2} }&\green{1} \\ \hline \\ \rm \red{cos \: A} & \green{1} &\green{ \dfrac{ \sqrt{3} }{2}}&\green{ \dfrac{1}{ \sqrt{2} }} & \green{\dfrac{1}{2}} &\green{0} \\ \hline \\\rm \red{tan A}& \green{0} &\green{ \dfrac{1}{ \sqrt{3} }}&\green{1} & \green{\sqrt{3}} & \rm \green{\infty} \\ \hline \\ \rm \red{cosec A }& \rm \green{\infty} & \green{2}& \green{\sqrt{2} }&\green{ \dfrac{2}{ \sqrt{3} }}&\green{1} \\ \hline\\ \rm \red{sec A} & \green{1 }&\green{ \dfrac{2}{ \sqrt{3} }}& \green{\sqrt{2}} & \green{2} & \rm \green{\infty} \\ \hline \\ \rm \red{cot A }& \rm \green{\infty} & \green{\sqrt{3}}& \red{1} & \green{\dfrac{1}{ \sqrt{3} }} & \green{0}\end{array}}}}\end{gathered}

Similar questions