Math, asked by pratikhya949, 1 year ago

If 47.2506=4A+7/B+2C+5/D+6E, then the value of (5A+3B+6C+D+3E) is : ?

Answers

Answered by Anonymous
28
hey mate.
here's the solution
Attachments:
Answered by shailendrachoubay216
29

The value of (5A+3B+6C+D+3E) = 153.6003.

Step-by-step explanation:

1. 47.2506 = 4\times A+\frac{7}{B}+2\times C+\frac{5}{D}+6\times E

2. 4\times 10+7+\frac{2}{10}+\frac{5}{100}+\frac{6}{10000}= 4\times A+\frac{7}{B}+2\times C+\frac{5}{D}+6\times E   ...1)

3. On comparing the corresponding term in equation 1), We get

  A =10

  B =1

  C= \frac{1}{10}

  D= 100

  E= \frac{1}{10000}

4. Putting the value of A,B,C,D and E in (5 A+3 B+6 C+D+3 E)

         = 5×A+3×B+6×C+D+3×E

         = 5\times 10+3\times 1+6\times \frac{1}{10}+100+3\times \frac{1}{10000}

         = 50+3+0.6+100+0.0003

         =153.6003

   

Similar questions