Math, asked by gamingaz750, 1 year ago

if 49^n+1*7^n-(343)n/7^3m * 2^4 = 3/343, prove that m=n+1

Answers

Answered by knjroopa
15

Step-by-step explanation:

Given If 49^n+1*7^n-(343)n/7^3m * 2^4 = 3/343, prove that m=n+1

  • So we have the equation
  •         49^n + 1 x 7^n – 343^n / 7^3m x 2^4 = 3 / 343
  •        We can write this as  
  •         (7^2)^n + 1 x 7^n – (7^3)^n / 7^3m x 2^4 = 3 / 7^3
  •          We get by the law of exponents a^m x a^n = a^m + n
  •           7^2n + 2 x 7^n – 7^3n / 7^3m x 2^4 = 3/7^3
  •               7^2n + 2 + n – 7^3n / 7^3m x 48 = 1/7^3
  •              7^3n + 2 – 7^3n / 7^3m x 48 = 1/7^3
  •             7^3n x 7^2 – 7^3n / 7^3m x 48 = 1/7^3
  •             7^3n (7^2 – 1) / 7^3m x 48 = 1/7^3
  •             7^3n x 48 / 7^3m x 48 = 1/7^3
  •            7^3n x 7^3 = 7^3m
  •        Since bases are same exponents are equal.
  •           So 3n + 3 = 3m
  •             3(n + 1) = 3m
  •           Or m = n + 1 (proved)

Reference link will be

https://brainly.in/question/21370309

Similar questions