Math, asked by haparruvishaanishn, 1 year ago

If 49x^2-b=(7x+1/2)(7x-1/2) then find the value of 'b'

Answers

Answered by VORTEX0825
191
The value of 'b' is 0.25
Attachments:
Answered by pulakmath007
2

\displaystyle \sf{ If \: 49 {x}^{2} - b = \bigg( 7x + \frac{1}{2} \bigg)\bigg( 7x - \frac{1}{2} \bigg)} \: \: then \: \: b = \frac{1}{4}

Given :

\displaystyle \sf{ 49 {x}^{2} - b = \bigg( 7x + \frac{1}{2} \bigg)\bigg( 7x - \frac{1}{2} \bigg)}

To find :

The value of b

Formula :

a² - b² = ( a + b ) ( a - b )

Solution :

Step 1 of 2 :

Write down the given equation

The given equation is

\displaystyle \sf{ 49 {x}^{2} - b = \bigg( 7x + \frac{1}{2} \bigg)\bigg( 7x - \frac{1}{2} \bigg)}

Step 2 of 2 :

Find the value of b

\displaystyle \sf{ 49 {x}^{2} - b = \bigg( 7x + \frac{1}{2} \bigg)\bigg( 7x - \frac{1}{2} \bigg)}

\displaystyle \sf{ \implies 49 {x}^{2} - b = {\bigg( 7x \bigg)}^{2} - {\bigg( \frac{1}{2} \bigg)}^{2} }

\displaystyle \sf{ \implies 49 {x}^{2} - b = 49 {x}^{2} - \frac{1}{4} }

Comparing both sides we get

\displaystyle \sf{ b = \frac{1}{4} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

2. to verify algebraic identity a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

Similar questions