if 4a-7b=14 and 9a=7(a+b), then determine the value of ab
Answers
Answered by
2
Answer:
a=7,b=2
Step-by-step explanation:
Given 4a-7b=14___(1)
9a=7(a+b)
9a=7a+7b
9a-7a-7b=0
2a-7b=0_____(2)
Subtract (2)by (1)
4a-7b-(2a-7b)=14-0
2a=14
a=7 put in (2)
14-7b=0
b=2
So
a=7,b=2
Answered by
4
The value of ab is equal to 14.
Step-by-step explanation:
The given equations are:
4a - 7b = 14 .......... (1)
and 9a = 7(a + b)
2a - 7b = 0 .......... (2)
To determine the value of ab = ?
Subtracting (1) from (2), we
4a - 7b - (2a - 7b) = 14 - 0
⇒ 4a - 7b - 2a + 7b = 14
⇒ 2a = 14
⇒ a = 7
Put a = 7 in equation (1), we get
2(7)-7b=0
⇒ 7b = 14
⇒ b = 2
∴ a = 7 and b = 2
The value of ab = 7 × 2 = 14
Thus, the value of ab is equal to 14.
Similar questions
Social Sciences,
6 months ago
Geography,
6 months ago
Math,
6 months ago
Math,
1 year ago
English,
1 year ago