Math, asked by dksingh7821, 11 months ago

If 4a^+9b^=37ab,what is the value of 2log(2a-3b)

Answers

Answered by rishu6845
1

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me please

Attachments:
Answered by harendrachoubay
5

The value of 2\log(2a-3b) =2\log 5+\log a+\log b.

Step-by-step explanation:

We have,

4a^2+9b^2=37ab

To find,  the value of 2\log(2a-3b) = ?

2\log(2a-3b)

=\log(2a-3b)^2

Using the logarithm identity,

\log a^n=n \log a

=\log (4a^2+9b^2-12ab)

Using algebraic identity,

(a-b)^{2} =a^{2} +b^{2} -2ab

=\log (37ab-12ab)

=\log (25ab)

=\log 25+\log a+\log b

=2\log 5+\log a+\log b

Thus, the value of 2\log(2a-3b) =2\log 5+\log a+\log b.

Similar questions