If 4sinФ= 3 cosФ, show that 12sinФ - 7cosФ/ 8sinФ + 3cosФ = 3/4 .
......................................................................
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Answers
S O L U T I O N : (ques.error)
4 sin Ф = 3 cos Ф, show that 12 sinФ - 7 cosФ/8 sinФ + 3 cosФ = 2/9 .
Taking L.H.S :
Thus,
L.H.S = R.H.S [verified]
Answer:
S O L U T I O N : (ques.error)
\underline{\bf{Given\::}}
Given:
4 sin Ф = 3 cos Ф, show that 12 sinФ - 7 cosФ/8 sinФ + 3 cosФ = 2/9 .
\underline{\bf{Explanation\::}}
Explanation:
\mapsto\tt{ 4 sin \:\theta = 3 cos \:\theta }↦4sinθ=3cosθ
\mapsto\tt{ \dfrac{sin\:\theta }{cos\:\theta } = \dfrac{3}{4} }↦
cosθ
sinθ
=
4
3
\mapsto\tt{ tan \:\theta = \dfrac{3}{4}\:\:\:\bigg[\therefore tan \:\theta = sin\:\theta / cos\:\theta \bigg]}↦tanθ=
4
3
[∴tanθ=sinθ/cosθ]
Taking L.H.S :
\mapsto\tt{\dfrac{12 sin\:\theta - 7 cos\:\theta }{8 sin\:\theta + 3 cos\:\theta} }↦
8sinθ+3cosθ
12sinθ−7cosθ
\mapsto\tt{\dfrac{12\frac{sin\:\theta }{cos\:\theta } - 7 \frac{cos\:\theta}{cos\:\theta} }{8 \frac{sin\:\theta}{cos\:\theta} + 3\frac{cos\:\theta}{cos\:\theta} } }↦
8
cosθ
sinθ
+3
cosθ
cosθ
12
cosθ
sinθ
−7
cosθ
cosθ
\mapsto\tt{\dfrac{12tan\:\theta - 7 }{8tan\:\theta + 3} }↦
8tanθ+3
12tanθ−7
\mapsto\tt{\dfrac{12\bigg(\dfrac{3}{4}\bigg) - 7 }{8\bigg(\dfrac{3}{4} \bigg)+ 3} }↦
8(
4
3
)+3
12(
4
3
)−7
\mapsto\tt{\dfrac{\dfrac{36}{4} - 7 }{\dfrac{24}{4} + 3} }↦
4
24
+3
4
36
−7
\mapsto\tt{\dfrac{\cancel{\dfrac{36}{4}} - 7 }{\cancel{\dfrac{24}{4}} + 3} }↦
4
24
+3
4
36
−7
\mapsto\tt{\dfrac{9 - 7 }{6 + 3} }↦
6+3
9−7
\mapsto\bf{\dfrac{2}{9} }↦
9
2