Math, asked by GautamPrabhu1443, 1 year ago

If 4x - 3y = 19 and x + 2y = 13, what are the respective values of x and y?

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{4x-3y=19\;\;and\;\;x+2y=13}

\underline{\textbf{To find:}}

\textsf{The values of x and y}

\underline{\textbf{Solution:}}

\mathsf{4x-3y=19}-----------(1)

\mathsf{x+2y=13}

\implies\mathsf{x=13-2y}----------(2)

\textsf{Using (2) in (1), we get}

\mathsf{4(13-2y)-3y=19}

\mathsf{52-8y-3y=19}

\mathsf{-8y-3y=19-52}

\mathsf{-11y=-33}

\mathsf{y=\dfrac{-33}{-11}}

\implies\boxed{\mathsf{y=3}}

\mathsf{Put\;y=3\;in\;(2)}

\mathsf{x=13-2(3)}

\mathsf{x=13-6}

\implies\boxed{\mathsf{x=7}}

\underline{\textbf{Answer:}}

\textbf{The values of x and y are 7 and 3}

Answered by nafibarli789
0

Answer:

The values of $\mathrm{x}$and $\mathrm{y}$ are 7 and 3

Step-by-step explanation:

Given,

4x - 3y = 19

x + 2y = 13

To find,

The  values of x and y.

Step 1

$$4 x-3 y=19 \ldots(1)$$

$$x+2 y=13$$....(2)

Using (2) in (1), we get

$$4(13-2y)-3y=19$$

$$52-8y-3y=19$$

$$-8y-3y=19-52$$

Simplifying,

$$-11y=-33$$

y=\frac{-33}{-11}

Then,

$\Longrightarrow y=3$

Put $y=3$ in (2)

$$x=13-2(3)$$

Simplifying,

$$x=13-6$$

We get,

$$\Longrightarrow x=7$$

The values of $\mathrm{x}$and $\mathrm{y}$ are 7 and 3

#SPJ2

Similar questions