If 4x=cosec A and 4/x = cotA, find the value of 4[x²-1/x²]
(class 10 CBSE SAMPLE PAPER 2017-18 MATHS)
Answers
Answered by
95
Solution:
Given:
4x= cosecA
x= cosecA/4
And 4/x = cotA
1/x= cotA/4
4[x²-1/x²]= 4[(cosecA/4)² - (cotA/4)²]
(PUTTING THE VALUES OF X AND 1/X)
4[x²-1/x²]= 4[ cosec²A/16 - cot²A/16]
4[x²-1/x²]= 4[(cosec²A- cot²A)/16]
4[x²-1/x²]= 4[1/16] (cosec²A- cot²A=1)
4[x²-1/x²]= 4/16= ¼
4[x²-1/x²]=¼
HOPE THIS WILL HELP YOU....
Given:
4x= cosecA
x= cosecA/4
And 4/x = cotA
1/x= cotA/4
4[x²-1/x²]= 4[(cosecA/4)² - (cotA/4)²]
(PUTTING THE VALUES OF X AND 1/X)
4[x²-1/x²]= 4[ cosec²A/16 - cot²A/16]
4[x²-1/x²]= 4[(cosec²A- cot²A)/16]
4[x²-1/x²]= 4[1/16] (cosec²A- cot²A=1)
4[x²-1/x²]= 4/16= ¼
4[x²-1/x²]=¼
HOPE THIS WILL HELP YOU....
Answered by
35
Hi
4x = cosec A
x = cosec A /4
x² = cosec² A /16 ____(1)
4/x = cot A
1/x = cot A/4
1/x² = cot² A /16 _____(2)
4( x² - 1/x² )
4( cosec² A /16 - cot² A /16 )
4 ( cosec²A - cot²A /16)
( 1/sin² A - cos²A/sin² A)/4
(1 - cos²A)/sin²A /4
sin²A / sin²A /4
1/4
4x = cosec A
x = cosec A /4
x² = cosec² A /16 ____(1)
4/x = cot A
1/x = cot A/4
1/x² = cot² A /16 _____(2)
4( x² - 1/x² )
4( cosec² A /16 - cot² A /16 )
4 ( cosec²A - cot²A /16)
( 1/sin² A - cos²A/sin² A)/4
(1 - cos²A)/sin²A /4
sin²A / sin²A /4
1/4
Similar questions