Math, asked by asmi360, 1 year ago

If √5=2•236 and √3=1•732 find the value of 2\√5+√3+7\√5-√3

Answers

Answered by DaIncredible
2
Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}


Given,

√5 = 2.236
√3 = 1.732

Now,

 \frac{2}{ \sqrt{5} +  \sqrt{3}  }  +  \frac{7}{ \sqrt{5}  -  \sqrt{3} }  \\

On rationalizing the denominator we get,

 =  \frac{2}{ \sqrt{5} +  \sqrt{3}  }  \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{7}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\  \\  =  \frac{2( \sqrt{5}  -  \sqrt{3} )}{ {( \sqrt{5} )}^{2}  -  {( \sqrt{3} )}^{2} }  +  \frac{7( \sqrt{5} +  \sqrt{3} ) }{ {( \sqrt{5} )}^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{2 \sqrt{5} - 2 \sqrt{3}  }{5 - 3}  +  \frac{7 \sqrt{5}  + 7 \sqrt{3} }{5 - 3}  \\  \\  =  \frac{2 \sqrt{5} - 2 \sqrt{3}  }{2}  +  \frac{7 \sqrt{5}  + 7 \sqrt{3} }{2}  \\  \\  =  \frac{2 \sqrt{5}  - 2 \sqrt{3} + 7 \sqrt{5}   + 7 \sqrt{3} }{2}  \\  \\  =  \frac{9 \sqrt{5} + 5 \sqrt{3}  }{2}  \\  \\  =  \frac{9 \times 2.236 + 5 \times 1.732}{2}  \\  \\  =  \frac{20.124 + 8.66}{2}  \\  \\  =  \frac{28.784}{2}  \\  \\  = 14.392
Similar questions