Math, asked by honSmilean, 1 year ago

IF 5+ 2√3 / 7+4√3 = a+b√3, then find the value of a and b....

Answers

Answered by Mansurihuzaif
360
5+2√3/7+4√3
=5+2√3/7+4√3*(7-4√3/7-4√3)
=[(5+2√3)(7-4√3)] / 49-48
=5(7-4√3)+2√3(7-4√3)
=35-20√3+14√3-24
=11-6√3
=11+(-6)√3

Therfore, a=11 and b=(-6)

kvnmurty: good answer
Answered by smithasijotsl
10

Answer:

a = 11 and b = -6

Step-by-step explanation:

Given,

\frac{5+2\sqrt{3} }{7+4\sqrt{3} } = a+b\sqrt{3}

Solution:

\frac{5+2\sqrt{3} }{7+4\sqrt{3} } = a+b\sqrt{3}

To rationalize the denominator, multiply and divide with a rationalizing factor

The rationalizing factor is 7 - 4\sqrt{3}

\frac{5+2\sqrt{3} }{7+4\sqrt{3} }  × \frac{7 - 4\sqrt{3} }{7-4\sqrt{3} }= a+b\sqrt{3}

\frac{(5+2\sqrt{3})(7-4\sqrt{3})}{(7+4\sqrt{3}(7-4\sqrt{3})}  = a+b\sqrt{3}

\frac{35 -20\sqrt{3} +14\sqrt{3}-24 }{7^2 - (4\sqrt{3})^2} = a+b√3

11 - 6√3 = a+b√3

Comparing on both sides

a = 11 and b = -6

#SPJ2

Similar questions