Math, asked by NazzNaser6331, 11 months ago

If 5+2 root 3/7+root 3= a-root 3b, find a and b where a and b are rational numbers.

Answers

Answered by LovelyG
76

Answer:

\large{\underline{\boxed{\sf a =  \frac{29}{46}  \: and \: b =   - \frac{9}{46}}}}

Step-by-step explanation:

 \sf \implies  \frac{5 + 2 \sqrt{3} }{7 +  \sqrt{3} }  = a -  \sqrt{3} b \\  \\ \sf \implies  \frac{5 + 2 \sqrt{3} }{7 +  \sqrt{3} }  \times  \frac{7  -  \sqrt{3} }{7 -  \sqrt{3} }  \\  \\ \sf \implies  \frac{(5 + 2 \sqrt{3})(7 -  \sqrt{3})}{(7)^{2}  -  { (\sqrt{3} )}^{2} }  \\  \\ \sf \implies  \frac{35 - 5 \sqrt{3}  + 14 \sqrt{3} - 6 }{49 - 3}  \\  \\ \sf \implies  \frac{29 + 9 \sqrt{3} }{46}  \\  \\ \sf \implies  \frac{29}{46}  +  \frac{9 }{46}  \sqrt{3}

On comparing it with a - √3 b,

 \boxed{ \bf a =  \frac{29}{46}  \: and \: b =   - \frac{9}{46} }

_______________________

\large{\underline{\underline{\mathfrak{\heartsuit \: Extra \: Information: \: \heartsuit}}}}

To rationalise the denominator, just multiply the whole fraction by its rationalising factor.

Example -

\sf \frac{1}{2 - \sqrt{3}}

Here, the rationalising factor of 2 - √3 is 2 + √3.

Answered by Anonymous
30

\mathfrak{\large{\underline{\underline{Answer :-}}}}

\boxed{\bold{a = \dfrac{29}{46}, \: b = - \dfrac{9}{46}}}

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

 \dfrac{5 + 2\sqrt{3} }{7 + \sqrt{3} } = a - \sqrt{3}b

To find : Value of a and b

Solution :

\sf{\dfrac{5 + 2\sqrt{3} }{7 + \sqrt{3}} = a - \sqrt{3}b}

Consider Left Hand Side

\sf{\dfrac{5 + 2\sqrt{3} }{7 + \sqrt{3}}}

Rationalize the denominator

The Rationalizing factor of 7 + √3 is 7 - √3 . So, Multiply numerator and denominator with rationalising factor.

 =  \dfrac{5 + 2 \sqrt{3} }{7 +  \sqrt{3}  }  \times  \dfrac{7 -  \sqrt{3} }{7 -  \sqrt{3} }

 =  \dfrac{5(7 - \sqrt{3}) + 2 \sqrt{3}(7 -  \sqrt{3})}{ {7}^{2} -  {( \sqrt{3})}^{2} }

Since (x + y)(x - y) = x² - y²

 = \dfrac{35 - 5 \sqrt{3} +14 \sqrt{3} - 2(3)}{49 - 3}

 =  \dfrac{35 + 9 \sqrt{3} - 6 }{46}

 =  \dfrac{29 + 9 \sqrt{3} }{46}

 =  \dfrac{29}{46}  +  \dfrac{9 \sqrt{3} }{46}

Now Consider,  \dfrac{5 + 2\sqrt{3} }{7 + \sqrt{3} } = a - \sqrt{3}b

\sf{\implies{ \dfrac{29}{46} + \dfrac{9 \sqrt{3} }{46}= a - \sqrt{3}b}}

Equating to the corresponding rational and irrational number we have ,

a =  \dfrac{29}{46}

 -  \sqrt{3}b = \dfrac{9 \sqrt{3} }{46}

- b = \dfrac{9}{46}

b = - \dfrac{9}{46}

\boxed{\bold{a = \dfrac{29}{46}, \: b = - \dfrac{9}{46}}}

Identity used :-

(x + y)(x - y) = x² - y²

Extra info related to the question :-

What is a rationlising factor ?

If the product of two irrational numbers is a rational number then each of the the two is rationalising factor of the other.

How to rationalise the denominator ?

1) Consider the denominator of the fraction.

2) Then multiply the numerator and denominator with rationalising factor of the denominator.

Similar questions