Math, asked by keerthimamjala82, 11 months ago

If √5+√3÷√5-√3=a+√15b,find a and b

Answers

Answered by sahasraramadugu2005
16

√5+√3/√5-√3=a+√15b

LHS=

√5+√3/√5-√3

=√5+√3/√5-√3 × √5+√3/√5+√3

=(√5+√3)²/(√5)² -(√3)²

(√5)² + 2×√5×√3 + (√3)²/5-3

5+2√15+3/2

5+3+2√15/2

8+2√15/2

ON COMPARING,

a=8/2

= 4

b=2/2

=1

hence,

√5+√3/√5-√3=4+1√15

Answered by amankumaraman11
15

 \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  = a +  \sqrt{15}b \\  \\  \\ rationalising \:  \: LHS \\  \\  \frac{ \sqrt{5} +  \sqrt{3}( \sqrt{5}  +  \sqrt{3} ) }{ {( \sqrt{5} )}^{2}  -   {( \sqrt{3} )}^{2}  }  \\  \\  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  \\  \\  \frac{8 + 2 \sqrt{15} }{2}  \\  \\  \frac{2(4 +  \sqrt{15} )}{2}  \\  \\ 4 +  \sqrt{15}

Hence,

a = 4 \:  \:  \:  \: \:  \:  \:   \: \& \:  \:  \:  \: b = 1

Similar questions