Math, asked by shiladevi17675, 1 year ago

if √5+√3/√5-√3=a+b√15 then find the value of a and b

Answers

Answered by Muskan5785
2
√5+√3/√5-√3×√5-√3/√5-√3
= √5(√5-√3)+√3(√5-√3)/(√5)^2-(√3)^2
= 5-√15+√15-3/2
= 2/2=1
it is the answer

Muskan5785: thanks
anuragkaushik66: what do u think about me
Muskan5785: photo is not clear
anuragkaushik66: kaisa lag raha hun mein dp par
anuragkaushik66: okk no matter
Muskan5785: not clear
Muskan1101: Don't chat here !!
Muskan5785: why Muskan
anuragkaushik66: no problem muskan mein aapke or kiso answer pe message karta hun
Muskan5785: ok
Answered by Muskan1101
9
Here's your answer!!

_______________________________


 =  >  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}   }   =  a + b \sqrt{15}

We will first rationalise it ,

 =  >  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  \times   \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }

 =  >  \frac{ ({ \sqrt{5}  +  \sqrt{3}) }^{2} }{ {( \sqrt{5}) -  {( \sqrt{3}) }^{2}  } }  = a + b \sqrt{15}

 =  >  \frac{5 + 3 + 2 \sqrt{15} }{2} = a + b \sqrt{15}

 =  >  \frac{8 + 2 \sqrt{15} }{2}  = a + b \sqrt{15}

 =  >  \frac{8}{2}  +  \frac{2 \sqrt{15} }{2}  = a + b \sqrt{15}

Now,


 =  > a =  \frac{8}{2}  = 4

 =  > b \sqrt{15}  =  \frac{2 \sqrt{15} }{2}

 \sqrt{15 }   \: got \: cancelled \: from \: both \: side

 =  > b =  \frac{2}{2}  = 1

__________________________________


Hope it helps you!! :)
Similar questions