Math, asked by cJayaraj11, 1 year ago

if √5+√3/√5-√3=a+b√15 then find the value of (a+b)a


pyskboss: 80

Answers

Answered by DelcieRiveria
201

Answer:

The value of (a+b)a is 20.

Step-by-step explanation:

The given equation is

\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+b\sqrt{15}

\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=a+b\sqrt{15}

\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5})^2-(\sqrt{3})^2}=a+b\sqrt{15}

\frac{5+2\sqrt{15}+3}{5-3}=a+b\sqrt{15}

\frac{8+2\sqrt{15}}{2}=a+b\sqrt{15}

4+\sqrt{15}=a+b\sqrt{15}

On comparing both sides.

a=4

b=1

The value of (a+b)a is

(a+b)a=(4+1)4=5\times 4=20

Therefore the value of (a+b)a is 20.

Answered by JackelineCasarez
21

20 is the value of (a + b)a

Step-by-step explanation:

Given that,

\frac{\sqrt{5} + \sqrt{3}  }{\sqrt{5} - \sqrt{3} } = a + \sqrt{15} b

To find,

a = ?

b = ?

Multiplying and dividing the given equation by \sqrt{5} + \sqrt{3}

\frac{\sqrt{5} + \sqrt{3}  }{\sqrt{5} - \sqrt{3}  } * \frac{\sqrt{5} + \sqrt{3}  }{\sqrt{5} + \sqrt{3} }

\frac{(\sqrt{5} + \sqrt{3})^{2}   }{(\sqrt{5})^2 - (\sqrt{3})^2 }

\frac{(\sqrt{5})^2 + 2.\sqrt{5} . \sqrt{3} +(\sqrt{3})^2  }{5-2}

⇒  \frac{5 + 2\sqrt{15} + 3}{2}

\frac{8 + 2 \sqrt{15} }{2}

⇒ 4 + \sqrt{15} = a+b√15

∵ a = 4 and b = 1

Thus, (a + b)a = (4 + 1)4 = 20

Learn more: find the value of a

brainly.in/question/17520931

Similar questions