Math, asked by adupu, 1 year ago

If 5+√3 /5-√3 =a+b, find rational number,a and b.

Answers

Answered by abhi569
5



 \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  = a  + b




By Rationalization,



 \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }   \\  \\  \\  \\  \frac{ {(5 +  \sqrt{3}) }^{2} }{ {(5)}^{2} - ( \sqrt{3} )^{2}  }  \\  \\  \\  \frac{25 + 3 + 10 \sqrt{3} }{25 - 3}  \\  \\  \\   \frac{28 + 10 \sqrt{3} }{22}  \\  \\  \\  \frac{14 + 5 \sqrt{2} }{11}




On comparing values,


 \frac{14}{11}  = a  \\  \\  \\  \\  \\  \frac{5 \sqrt{3} }{11}  = b





I hope this will help you


(-:

Answered by Cutiepie93
4
Hello friends!!

Here is your answer :

 \frac{5 + \sqrt{3} }{5 - \sqrt{3} } = a + b

First we have to rationalise the denominator..

\frac{5 + \sqrt{3} }{5 - \sqrt{3} } \: \times \frac{5 + \sqrt{3} }{5 + \sqrt{3} }

\frac{(5 + \sqrt{3} )(5 + \sqrt{3}) }{(5 - \sqrt{3} )(5 + \sqrt{3} )}

\frac{{(5 + \sqrt{3})}^{2} }{(5 - \sqrt{3})(5 + \sqrt{3}) }

Using identity

( x + y )² = x² + y² + 2xy

( x + y ) ( x - y ) = x² - y²

 \frac{ {(5)}^{2} + {( \sqrt{3}) }^{2} + 2(5)( \sqrt{3} )}{ {(5)}^{2} - {( \sqrt{3} )}^{2} }

 \frac{25 + 3 + 10 \sqrt{3} }{25 - 3}

 \frac{28 + 10 \sqrt{3} }{22}

 \frac{28}{22} + \frac{10 \sqrt{3} }{22}

 \frac{14}{11} + \frac{5 \sqrt{3} }{11}

On comparing these values,

a = \frac{14}{11}

b = \frac{5 \sqrt{3} }{11}

Hope it helps you.. ☺️☺️☺️☺️

# Be Brainly
Similar questions