Math, asked by leenanp9504, 9 months ago

if 5+4 root 3/5+4 root3=a-b root 3, find a and b.please answer it immediatly.it is urjent​

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:a=5}}}

\green{\tt{\therefore{Value\:of\:b=-\frac{24}{5}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies 5 +  \frac{4 \sqrt{3} }{ 5}  + 4 \sqrt{3}  = a - b \sqrt{3}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  Value \: of \: a =?  \\  \\  \tt:  \implies  Value \: of \: b =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies 5 +  \frac{4 \sqrt{3} }{5}  + 4 \sqrt{3}  = a - b \sqrt{3}  \\  \\ \tt:  \implies  \frac{5 \times 5 + 4 \sqrt{3}  + 4 \times 5\sqrt{3} }{5}  = a - b \sqrt{3}  \\  \\ \tt:  \implies  \frac{25 + 4 \sqrt{3} + 20 \sqrt{3}  }{5}  = a - b \sqrt{3}  \\  \\ \tt:  \implies  \frac{25 + 24 \sqrt{3} }{5}  = a - b \sqrt{3}  \\  \\ \tt:  \implies  \frac{25}{5}  +  \frac{24 \sqrt{3} }{5}  = a - b \sqrt{3}  \\  \\  \text{Both \: side \: comparing :} \\  \green{\tt:  \implies a =  \frac{25}{5}  = 5} \\  \\ \tt:  \implies  - b \sqrt{3}  =  \frac{24 \sqrt{3} }{5}  \\  \\ \tt:  \implies b =  -  \frac{24 \sqrt{3} }{5 \sqrt{3} }  \\  \\  \green{\tt:  \implies b =  -  \frac{ 24}{5} }

Answered by CunningKing
70

✪ CorrecT QuestioN ✪

\tt{If\ \dfrac{5+4\sqrt{3} }{5-4\sqrt{3} }=a-b\sqrt{3},\ find\ the\ value\ of\ a\ and\ b.}

✪ SolutioN ✪

\tt{Rationalising\:\: \dfrac{5+4\sqrt{3}}{5-4\sqrt{3}}:- }

\tt{\dfrac{5+4\sqrt{3} }{5-4\sqrt{3} } }\\\\\\\tt{=\dfrac{(5+4\sqrt{3})(5+4\sqrt{3})}{(5-4\sqrt{3})(5+4\sqrt{3})} }\\\\\\\tt{=\dfrac{(5+4\sqrt{3})^2}{(5)^2-(4\sqrt{3})^2}}\\\\\\\tt{=\dfrac{(5)^2+(4\sqrt{3})^2-2\times5\times4\sqrt{3}}{25-48}}\\\\\\\tt{=\dfrac{25+48-40\sqrt{3}}{-23} }\\\\\\\tt{=\dfrac{-(73-40\sqrt{3})}{23}}\\\\\\\tt{=\dfrac{-73+40\sqrt{3}}{23}}

\tt{=\dfrac{-73}{23}+\dfrac{40\sqrt{3}}{23}  }\\\\\\\tt{\implies \dfrac{-73}{23}+\dfrac{40\sqrt{3}}{23}=a-b\sqrt{3} }

On comparing,

\boxed{\tt{a=\dfrac{-73}{23}}\:\:\:\:and\:\:\:\:b=\dfrac{40}{23}}

Similar questions