If 5 cosx + 12 cos y = 13.then the
maximum value of 5 sinx + 12 siny is
Answers
Answered by
3
Answer:
(5cosx+12cosy)=13
(5cosx+12cosy)2=132=169
25cos2x+120cosxcosy+144cos2y=169−(1)
5sinx+12siny=A
25sin2x+120sinxsiny+144siny=A2
adding eqution 1 and 2
25+144+120(cosxcosy+sinxsiny)
=A2+169
120(cosxcosy+sinxsiny)=A2
120cos(x−y)=A2
A2 is a max whencos(x−y)=1
A2max=120
Amax=120‾‾‾‾√
Step-by-step explanation:
please mark as brainliest
Answered by
2
Answer:
5cosx+12cosy)=13
(5cosx+12cosy)2=132=169
25cos2x+120cosxcosy+144cos2y=169−(1)
5sinx+12siny=A
25sin2x+120sinxsiny+144siny=A2
adding eqution 1 and 2
25+144+120(cosxcosy+sinxsiny)
=A2+169
120(cosxcosy+sinxsiny)=A2
120cos(x−y)=A2
A2 is a max whencos(x−y)=1
A2max=120
Amax=120‾‾‾‾√
Step-by-step explanation:
follow me
Similar questions