Math, asked by devanandhaonline, 5 hours ago

If 5 cot A = 8, then get the value of sin A and sec A​

Answers

Answered by samdynamo7
2

Answer:

Sin A = 5/✓89

Sec A= ✓89/8

Step-by-step explanation:

for steps look at the attached image above.

Attachments:
Answered by senboni123456
5

Answer:

Step-by-step explanation:

We have,

\tt{5\,cot(A)=8}

\tt{\implies\,cot(A)=\dfrac{8}{5}}

\tt{\implies\,\dfrac{cos(A)}{sin(A)}=\dfrac{8}{5}}

\tt{\implies\,cos(A)=\dfrac{8}{5}\,sin(A)}

\tt{\implies\,cos^2(A)=\dfrac{64}{25}\,sin^2(A)}

\tt{\implies\,1-sin^2(A)=\dfrac{64}{25}\,sin^2(A)}

\tt{\implies\,25-25\,sin^2(A)=64\,sin^2(A)}

\tt{\implies\,25=64\,sin^2(A)+25\,sin^2(A)}

\tt{\implies\,25=89\,sin^2(A)}

\tt{\implies\,\dfrac{25}{89}=sin^2(A)}

\tt{\implies\,sin(A)=\dfrac{5}{\sqrt{89}}}

Now

\tt{tan(A)=\dfrac{5}{8}}

\tt{\implies\,tan^2(A)=\dfrac{25}{64}}

\tt{\implies\,sec^2(A)-1=\dfrac{25}{64}}

\tt{\implies\,sec^2(A)=\dfrac{25}{64}+1}

\tt{\implies\,sec^2(A)=\dfrac{25+64}{64}}

\tt{\implies\,sec^2(A)=\dfrac{89}{64}}

\tt{\implies\,sec(A)=\dfrac{\sqrt{89}}{8}}

Similar questions