Math, asked by khyati112006, 5 months ago

if -5 is a root of the quadratic equation 2x² + px - 15 = 0 and the quadratic equation p(x²+ x) + k =0 has equal roots find the value of k​

Answers

Answered by anshu005512
0

Step-by-step explanation:

If the roots are equal(double root) it means that discriminant of quadratic equation ... For k=6 or k= -6 given equation has real and equal roots ...

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question :-  }}

If -5 is a root of the quadratic equation 2x² + px - 15 = 0 and the quadratic equation p(x²+ x) + k =0 has equal roots find the value of k.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{  -5  \: is \:  a \:  root  \: of   \: 2x² + px - 15 = 0} \\ &\sf{p(x²+ x) + k =0  \: has \:  equal \:  roots} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Find -  \begin{cases} &\sf{the \:  value \:  of  \: k}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 1 }}

☆ Since -5 is a root of the quadratic equation 2x² + px - 15 = 0

\sf \:  ⟼ \therefore \: 2 \times  {( - 5)}^{2}  - 5p - 15 = 0

\sf \:  ⟼50 - 5p - 15 = 0

\sf \:  ⟼35 - 5p = 0

\bf\implies \: \: p \:  =  \: 7

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2 }}

☆ The quadratic equation p(x²+ x) + k =0 has equal roots.

The equation can be rewritten as

\sf \:  ⟼p {x}^{2}  + px + k = 0 \:

☆ Since, equation has equal roots.

☆ Therefore, Discriminant = 0

\begin{gathered}\begin{gathered}\bf here -  \begin{cases} &\sf{a = p} \\ &\sf{b = p}\\ &\sf{c = k} \end{cases}\end{gathered}\end{gathered}

☆ Now, as we know, Discriminant = 0.

\bf\implies \: \:  {b}^{2}  - 4ac = 0

\sf \:  ⟼ \:  {p}^{2}  - 4pk = 0

\sf \:  ⟼ \: p(p - 4k) = 0

\sf \:  ⟼7(7 - 4k) = 0 \:  \:  \: ( \because \: p \:  =  \: 7)

\bf\implies \:k = \dfrac{7}{4}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions