if 5 tan A = 12 find 13 sin A/ 3
Answers
Answered by
5
tan A=12/5
tanA=opp.side/adj.side=12/5
opp.side=12
adj.side=5
by pythagoras theorem,hypotenuse=rt(12^2+5^2)=13
sinA=oppside/hypo=12/13
so 13sinA/3=13×12/13×1/3=4
13sinA/3=4
tanA=opp.side/adj.side=12/5
opp.side=12
adj.side=5
by pythagoras theorem,hypotenuse=rt(12^2+5^2)=13
sinA=oppside/hypo=12/13
so 13sinA/3=13×12/13×1/3=4
13sinA/3=4
kkn2:
mark
Answered by
2
tan A = 12/5
tan A =opp side/adjacent side
so opp side=12
adj side=5
thus,hypotenuse=√169=13
(Pythagoras theorm)
sinA=opp side /hypotenuse
=12/13
so 13sinA=13*12/13
=12
13sinA/3=12/3=4
4 is the answer
hope it helps
tan A =opp side/adjacent side
so opp side=12
adj side=5
thus,hypotenuse=√169=13
(Pythagoras theorm)
sinA=opp side /hypotenuse
=12/13
so 13sinA=13*12/13
=12
13sinA/3=12/3=4
4 is the answer
hope it helps
Similar questions