If 5 tan A = 4, show that 5 sin A - 3 cos
A÷
5 cos A + 2 sin A=
1
6
Answers
Answered by
2
\frac{1}{6}
Step-by-step explanation:
Given that ,
5 tan theta = 4
tan theta = 4/5
We know that
tan theta = Sin theta/Cot theta
Say X
Sin theta = 4x
Cos theta = 5x
Evaluate the values of LHS Side
\frac{5 \ Sin\theta - 3\ Cos\theta}{5\ Sin\theta + \ 2Cos\theta}
=> \frac{(5 * 4 )- (3 * 5) }{(5 * 4) + (2 * 5)}
=> \frac{20 -15}{20+ 10}
=> \frac{5}{30}
=> \frac{1}{6}
Hence Proved
Similar questions
Chemistry,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Biology,
1 year ago