Math, asked by tdsdgaming595, 30 days ago

if √57 + (12√15) = a√3 + b√5 then find the value if a = 2 and b = 3​

Answers

Answered by himanshitapkir
0

Step-by-step explanation:

I hope you understand this answer

Attachments:
Answered by SmritiSami
0

The values are a=4 and b=1.

Given:

√57 + (12√15) = a√3 + b√5

To Find:

The value of the equation.

Solution:

\frac{\sqrt[]{5}+\sqrt[]{3}  }{\sqrt[]{5}-\sqrt[]{3}  } =a + \sqrt[]{15} b

Multiply and divide the equation by \sqrt[]{5} + \sqrt[]{3}

\frac{\sqrt[]{5}+\sqrt[]{3}  }{\sqrt[]{5}-\sqrt[]{3}  }  x \frac{\sqrt[]{5}+\sqrt[]{3}  }{\sqrt[]{5}+\sqrt[]{3}  }

=\frac{(\sqrt[]{5}+\sqrt[]{3} )^{2}  }{(\sqrt[]{5}^{2}) -(\sqrt[]{3} ^{2})  }

=\frac{5+2\sqrt{15}+3 }{2}

=\frac{8+2\sqrt{15} }{2}

=4+\sqrt{15}

Hence we can infer that, a= 4 and b= 1.

Similar questions