if 5cosx=4, evaluate(1-tan²x)/(1+tan²x)
Answers
Answered by
0
Answer:
Consider the given integral.
I=∫
4sinx+5cosx
9cosx−sinx
dx
I=∫
4sinx+5cosx
4sinx+5cosx−5sinx+4cosx
dx
I=∫(1)dx+∫
4sinx+5cosx
4cosx−5sinx
dx
I=I
1
+I
2
Therefore,
I
2
=∫
4sinx+5cosx
4cosx−5sinx
dx
Let t=4sinx+5cosx
4sinx+5cosx
dt=(4cosx−5sinx)dx
Therefore,
I
2
=∫
t
1
dt
I
2
=log(4sinx+5cosx)+C
So,
I=x+log(4sinx+5cosx)+C
Hence. this is the answer.
Similar questions