If 5sino - 12coso = 0, find the values of seco and coseco.
Answers
Answer:
13/5,13/12
Step-by-step explanation:
5sino=12coso
5/12=coso/sino
5/12=coto
so we know that cot is base/height in right angle triangle.. so base is 5 and height is 12
so by using hyptonues (don't see the spelling) formula
hy^2 = b^2 + al^2
hy^2 =25+144
hy=13 ...
1/coso=seco , coso = base / hyptonues ..
hy/base= seco
13/5= seco
13/12=coseco
Answer:
- The value of sec θ is 13/5 and the value of cosec θ is 13/12.
Step-by-step explanation:
Given that:
- 5 sin θ - 12 cos θ = 0 _______(i)
To Find:
- The values of sec θ and cosec θ.
Finding the value of sec θ:
- According to the question.
⟶ 5 sin θ - 12 cos θ = 0
⟶ 5 sin θ = 12 cos θ
- Squaring both sides.
⟶ 25 sin² θ = 144 cos² θ
- We know: sin² θ = 1 - cos² θ
⟶ 25(1 - cos² θ) = 144 cos² θ
⟶ 25 - 25 cos² θ = 144 cos² θ
⟶ 144 cos² θ + 25 cos² θ = 25
⟶ 169 cos² θ = 25
⟶ (13 cos θ)² = (5)²
- Cancelling power both sides.
⟶ 13 cos θ = 5
⟶ cos θ = 5/13 _______(ii)
- We know: cos θ = 1/sec θ
⟶ 1/sec θ = 5/13
⟶ sec θ = 13/5
∴ The value of sec θ = 13/5
Finding the value of cosec θ:
- In equation (i).
⟶ 5 sin θ - 12 cos θ = 0
- Substituting the value of cos θ from eqⁿ (ii).
⟶ 5 sin θ - 12 × 5/13 = 0
⟶ 5 sin θ - 60/13 = 0
⟶ 5 sin θ = 60/13
⟶ sin θ = 60/(13 × 5)
⟶ sin θ = 12/13
- We know: sin θ = 1/cosec θ
⟶ 1/cosec θ = 12/13
⟶ cosec θ = 13/12
∴ The value of cosec θ = 13/12