Math, asked by akshaigv9257, 11 months ago

If 5tan theta=12 than find the value of sin theta + cos theta/ cos theta +sin theta

Answers

Answered by ITzBrainlyGuy
2

QUESTION

If 5tanθ= 12 then find the value of sinθ + cosθ ÷ cosθ + sinθ ?

USED FORMULA

→» (a + b)(a - b) = a² - b²

→» b + a = a + b

ANSWER:

Firstly we have to simplify the question

Take the question

If

5  \tan( \theta)  =  12

Then,

 \tan( \theta)  =  \frac{12}{5}  \\

method 1:

 \frac{ \sin( \theta)  +  \cos( \theta) }{ \cos( \theta)  +  \sin( \theta) }  \\

rationalize the denominator

 \frac{ \sin( \theta)  +  \cos( \theta) }{ \cos( \theta)   + \sin( \theta) }  \times  \frac{ \cos( \theta)   -  \sin( \theta) }{ \cos(   \theta) -  \sin( \theta)  }

 \frac{ { \sin( \theta) }^{2}  -  { \cos( \theta) }^{2} }{  { \sin( \theta) }^{2}   -  { \cos( \theta) }^{2} }  = 1

without simplifying the question we will get the answer = 1

method 2:

We know that

cosθ + sinθ = sinθ + cosθ

then,

 \frac{ \sin( \theta)   + \cos( \theta) }{ \cos( \theta)  +  \sin( \theta) }  =  \frac{ \sin( \theta)  +  \cos( \theta) }{ \sin( \theta)  +  \cos( \theta) }

The numerator and denominator will get answer = 1

your answer = 1

CONCEPT USED:

→» rationalization

Answered by Anonymous
52

Answer:-

1

Solution:-

METHOD :- 1

Note:-

  • Here I'm denoting theta with alpha
  • tanA = sinA / cosA (I will be using this formula for solving)

Procedure:-

  • Considering the given statement , 5tan theta = 12
  •  \tan( \alpha )  =  \frac{12}{5}  \\  \\  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  = \frac{12}{5} \\  \\  \sin( \alpha )  = 12k \:  \:  \: and  \:  \: \cos( \alpha )  = 5k

Now considering the statement to prove,

  \frac{ \sin( \alpha ) +  \cos( \alpha )  }{ \cos( \alpha )  +  \sin( \alpha ) }  \\  \\  =  \frac{12k + 5k}{5k + 12k}  \\  \\  =  \frac{17k}{17k}  \\  \\  = 1

METHOD:-2

CONSIDERING GIVEN STATEMENT

 \frac{ \sin( \alpha ) +  \cos( \alpha )  }{ \cos( \alpha )  +  \sin( \alpha ) }   \\  \\  \frac{ \sin( \alpha ) +  \cos( \alpha )  }{   \sin( \alpha )  + \cos( \alpha )  }   \\  \\ let \:  \: \sin( \alpha ) +  \cos( \alpha ) \:  = x \\  \\  \frac{x}{x}  \\  \\  = 1

Similar questions