Math, asked by DrSpecto, 7 months ago

If (5xy + 3y)^2- (5xy - 3y)^2 = Kxy^2, = then the value of 'K' is:​

Answers

Answered by Anonymous
11

◕ Question :

If \sf{(5xy + 3y)^{2} - (5xy - 3y)^{2} = kxy^{2}}, then, find the Value of "k".

◕ To Find :

The value of "k" in the Expression.

◕ We Know :

  • \sf{(a + b)^{2} = a^{2} + 2ab + b^{2}}

  • \sf{(a - b)^{2} = a^{2} - 2ab + b^{2}}

◕ Solution :

\purple{\sf{(5xy + 3y)^{2} - (5xy - 3y)^{2} = kxy^{2}}}

Using the identity ,

  • \sf{(a + b)^{2} = a^{2} + 2ab + b^{2}}

  • \sf{(a - b)^{2} = a^{2} - 2ab + b^{2}}

We Get :

\sf{\Rightarrow (5xy)^{2} + 2 \times 5xy \times 3y + (3y)^{2} - \big((5xy)^{2} - 2 \times 5xy \times 3y + (3y)^{2}\big) = kxy^{2}}

\\

\sf{\Rightarrow 25x^{2}y^{2} + 2 \times 15xy^{2} + 9y^{2} - \big(25x^{2}y^{2} - 2 \times 15xy^{2} + 9y^{2}\big) = kxy^{2}}

\\

\sf{\Rightarrow 25x^{2}y^{2} + 30xy^{2} + 9y^{2} - \big(25x^{2}y^{2} - 30xy^{2} + 9y^{2}\big) = kxy^{2}}

\\

\sf{\Rightarrow \cancel{25x^{2}y^{2}} + 30xy^{2} + \cancel{9y^{2}} - \cancel{25x^{2}y^{2}} + 30xy^{2} - \cancel{9y^{2}} = kxy^{2}}

\\

\sf{\Rightarrow 30xy^{2} + 30xy^{2} = kxy^{2}}

\\

\sf{\Rightarrow 60xy^{2} = kxy^{2}}

\\

\sf{\Rightarrow \dfrac{60\cancel{xy^{2}}}{\cancel{xy^{2}}} = k}

\\

\purple{\sf{\Rightarrow 60 = k}}

\\

Hence ,the value of "k" in the Equation is 60 .

\purple{\sf{\underline{\boxed{(5xy + 3y)^{2} - (5xy - 3y)^{2} = 60xy^{2}}}}}

» Additional information :

  • \sf{a^{2} - b^{2} = (a + b)(a - b)}

  • \sf{a^{2} + b^{2} = (a + b)^{2} - 2ab}

  • \sf{a^{2} + \dfrac{1}{x^{2}} =  \bigg(a + \dfrac{1}{x}\bigg)^{2} - 2ab}

  • \sf{a^{2} + \dfrac{1}{x^{2}} =  \bigg(a - \dfrac{1}{x}\bigg)^{2} + 2ab}
Answered by MaIeficent
12

Step-by-step explanation:

\bf{\underline{\underline\red{Given:-}}}

  • \rm {(5xy + 3y)}^{2}  -  {(5xy - 3y)}^{2}  = kx {y}^{2}

\bf{\underline{\underline\blue{To\:Find:-}}}

  • The value of ' k '

\bf{\underline{\underline\green{Solution:-}}}

To solve this problem you need to know some basic identities.

  • \rm  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

  • \rm  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

Now:-

\rm {(5xy + 3y)}^{2}  -  {(5xy - 3y)}^{2}  = kx {y}^{2}

\implies\rm \big \{ {(5xy) } ^{2}  +  {(3y)}^{2} + 2(5xy)(3y)  \big\}  -   \big \{{(5xy) } ^{2}  +  {(3y)}^{2}  -  2(5xy)(3y) \big \} = kx {y}^{2}

\implies\rm \big \{ 25 {x}^{2}  {y}^{2}   +  {9y}^{2} + 30x {y}^{2}  \big\}  -   \big \{ 25 {x}^{2}  {y}^{2}   +  {9y}^{2}  -  30x {y}^{2}\big \} = kx {y}^{2}

  \implies\rm 25 {x}^{2}  {y}^{2}   +  {9y}^{2} + 30x {y}^{2}  -   25 {x}^{2}  {y}^{2}    -  {9y}^{2}   +  30x {y}^{2} = kx {y}^{2}

  \implies\rm 25 {x}^{2}  -   25 {x}^{2} {y}^{2}   +  {9y}^{2}  -  {9y}^{2}   +  30x {y}^{2}  + 30x {y}^{2}= kx {y}^{2}

  \implies\rm  60x {y}^{2}= kx {y}^{2}

  \implies\rm   \dfrac{60x {y}^{2}}{x {y}^{2} }= k

  \implies\rm   60= k

  \implies\rm   k = 60

The value of k = 60

\bf{\underline{\underline\pink{Alternatively:-}}}

By using the identity

  •   \rm   {(a + b)}^{2}  -  {(a - b)}^{2}  = 4ab

Here (5xy + 3y)² - (5xy - 3y)² is the form (a + b)² - (a - b)²

Here:-

• a = 5xy

• b = 3y

\rm {(5xy + 3y)}^{2}  -  {(5xy - 3y)}^{2}  = kx {y}^{2}

\rm  \implies4(5xy)(3y)= kx {y}^{2}

\rm  \implies4(15x {y}^{2} )= kx {y}^{2}

\rm  \implies60x {y}^{2} = kx {y}^{2}

tex]

  \implies\rm   60= k

  \implies\rm   k = 60

 \large\underline{ \boxed{\rm \purple{ \therefore The \: value \: of \: k = 60}}}

Similar questions