Math, asked by theofficial0adn, 9 months ago

if 6 term of an ap is -10 and 10term -26 then find the 15term

Answers

Answered by abhi569
8

Answer:

- 46

Step-by-step explanation:

From the properties of AP :

        nth term = a + ( n - 1 )d            { where a is the first term and d is the common difference between the terms }.

Let : first term of this AP be a and d be the common difference.

6th term is - 10:

⇒ a + ( 6 - 1 )d = - 10

⇒ a + 5d = - 10                 ...( 1 )

10th term is -26 :

⇒ a + ( 10 - 1 )d = - 26

⇒ a + 9d = - 26             ...( 2 )

( 2 ) - ( 1 )

⇒ a + 9d - a - 5d = - 26 - (- 10 )

⇒ 4d = - 26 + 10

⇒ 4d = - 16

⇒ d = - 4

            Thus,

            a + 5d = - 10

            a + 5( - 4 ) = -10

            a = - 10 + 20

            a = 10

Hence 15 th term is :

⇒  a + 14d

⇒  10 + 14( - 4 )

⇒ 10 - 56

⇒ - 46

Answered by Anonymous
8

Given :

  • 6 th term of an ap is -10.
  • 10 th term of the ap is -26.

To Find :

  • The 15th term, \bold{t_{15}}

Solution :

Let the first term of the ap be a.

Let the common difference of the ap be d.

We know the formula to find nth term of an AP,

\large{\bold{\red{t_n\:=\:a\:+\:(n-1)d}}}

6th term of AP :

Here,

  • \sf{t_n\:=\:-10}
  • \sf{n=6}

Block the values in the formula,

\longrightarrow \sf{-10\:=\:a+\:(6-1)d}

\longrightarrow \sf{-10=a+(5)d}

\longrightarrow \sf{-10=a+5d\:\:(1)}

10th term of AP :

Here,

  • \sf{t_n\:=\:-26}
  • \sf{n=10}

Block in the values,

\longrightarrow \sf{-26=a+(10-1)d}

\longrightarrow \sf{-26=a+(9)d}

\longrightarrow \sf{-26=a+9d\:\:\:(2)}

Now, substract equation (2) from (1),

\longrightarrow \sf{a+5d-(a+9d)=-10-(-26)}

\longrightarrow \sf{a+5d-a-9d=-10+26}

\longrightarrow \sf{5d-9d=16}

\longrightarrow \sf{-4d=16}

\longrightarrow \sf{d=\dfrac{16}{-4}}

\longrightarrow \sf{d=-4}

Substitute, d = 4 in equation (1)

\longrightarrow \sf{a+5d=-10}

\longrightarrow \sf{a+5(-4)=-10}

\longrightarrow \sf{a+(-20)=-10}

\longrightarrow \sf{a-20=-10}

\longrightarrow \sf{a=-10+20}

\longrightarrow \sf{a=10}

15th term of AP :

Using the formula of \sf{t_n},

\longrightarrow \sf{t_{15}\:=\:a\:+\:(15-1)d}

\longrightarrow \sf{t_{15}\:=\:10+(14)(-4)}

\longrightarrow \sf{t_{15}\:=\:10\:+\:(-56)}

\longrightarrow \sf{t_{15}\:=\:10-56}

\longrightarrow \sf{t_{15}=-46}

\large{\boxed{\bold{15th\:term\:,t_{15}\:=\:-46}}}

Similar questions