Math, asked by shwetanksingh, 1 year ago

if 6th term of an ap is -10 and its 10th term is - 26 then find the 15th term of an ap

Answers

Answered by bhaveshvk18
3
hey

here is ur answer
Attachments:
Answered by silentlover45
8

\large\underline{Given:-}

  • 6th term of an Ap ⇢ -10
  • 10th term of that Ap ⇢ -26

\large\underline{To find:-}

  • find it's 15th term...?

\large\underline{Solutions:-}

\: \: \: \: \: \star \: \: \: {a_n} \: \: = \: \: {a} \: + \: {(n \: - \: {1})} \: d

  • a ⇢ first term
  • d ⇢ common difference
  • n ⇢ number of term
  • an ⇢ last term

»★ We have

✰ 6th term of an Ap ⇢ -10

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({6} \: - \: {1})} \: d \: \: = \: \: {-10}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {5d} \: \: = \: \: {-10} \: \: \: \: \: \: \: ....{(i)}.

✰ And, 10th term of that Ap ⇢ -26

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({10} \: - \: {1})} \: d \: \: = \: \: {-26}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {9d} \: \: = \: \: {-26} \: \: \: \: \: \: \: ....{(ii)}.

»★ Now, Subtracting Eq. (i) and Eq. (ii)

 {a} \: + \: {5d} \: \: = \: \: {-10} \\ {a} \: + \: {9d} \: \: = \: \: {-26} \\ \underline{- \: \: \: \: \: \: \: - \: \: \: \: = \: \: \: \: + \: \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ \: \: \: \: \: \: \: \: {-4d} \: \: \: \: \: = \: \: \: {16}

\: \: \: \: \:  \leadsto \: \: d \: \: = \: \: \frac{-16}{4}

\: \: \: \: \:  \leadsto \: \: {-4}

»★ Now, putting the value of d in Eq. (i)

\: \: \: \: \: \leadsto \: \: {a} \: + \: {5d} \: \: = \: \: {-10}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {5} \: \times \: {-4} \: \: = \: \: {-10}

\: \: \: \: \: \leadsto \: \: {a} \: - \: {20} \: \: = \: \: {-10}

\: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {-10} \: + \: {20}

\: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {10}

✰ Let the 15th term be a + 14d

Then, by putting the value of a and d.

\: \: \: \: \: \leadsto \:\: {a_{15}} \: \: = \: \: {a} \: + \: {14d}

\: \: \: \: \: \leadsto \: \: {a_{15}} \: \: = \: \: {10} \: + \: {14} \: \times \: {-4}

\: \: \: \: \: \leadsto \:\: {a_{15}} \: \: = \: \: {10} \: - \: {56}

\: \: \: \: \: \leadsto {a_{15}} \: \: = \: \: {-46}

\: \: \: \: \:  \star \: \: \: Hence,

\: \: \: \: \: \therefore {15th} \: \: term \: \: is \: \: {-46}

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

Similar questions