Math, asked by goodwillmoses80, 2 months ago

if 6x<2-3x and x-7<3x what range of values of x satisfy both inequalities​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:6x &lt; 2 - 3x -  -  - (1)

and

\rm :\longmapsto\:x - 7 &lt; 3x -  -  - (2)

Now,

Consider,

\rm :\longmapsto\:6x &lt; 2 - 3x

☆ On adding 3x in each term, we get

\rm :\longmapsto\:6x  + 3x&lt; 2 - 3x + 3x

\rm :\longmapsto\:9x &lt; 2

☆ On dividing by 9, each term, we get

\bf\implies \:x &lt; \dfrac{2}{9}  -  -  - (3)

Now,

Consider

\rm :\longmapsto\:x - 7 &lt; 3x

☆ On Subtracting 3x in each term, we get

\rm :\longmapsto\:x - 7 - 3x &lt; 3x - 3x

\rm :\longmapsto\: - 2x - 7 &lt; 0

☆ On adding 7 in each term, we get

\rm :\longmapsto\: - 2x - 7 + 7 &lt; 0 + 7

\rm :\longmapsto\: - 2x &lt; 7

☆ On dividing each term by - 2, we get

\bf :\longmapsto\:x &gt;  -  \: \dfrac{7}{2}  -  -  - (4)

☆ From (3) and (4), we concluded that

\rm :\longmapsto\:x \in \: \bigg( - \dfrac{7}{2} ,\dfrac{2}{9}  \bigg)

Additional Information :-

\boxed{ \green{ \tt \: x &gt; y \implies \:  - x &lt;  - y}}

\boxed{ \green{ \tt \: x  &lt;  y \implies \:  - x  &gt;   - y}}

\boxed{ \green{ \tt \: -  x  &lt;  y \implies \:  x  &gt;   - y}}

\boxed{ \green{ \tt \: -  x   &gt;   y \implies \:  x   &lt;    - y}}

\boxed{ \green{ \tt \: x \geqslant y \implies \:  - x \leqslant  - y}}

\boxed{ \green{ \tt \: x \leqslant y \implies \:  - x \geqslant  - y}}

\boxed{ \green{ \tt \: \dfrac{x}{y} &gt; 0 \implies \: x &gt; 0, \: y &gt; 0 \: or \: x &lt; 0, \:y &lt; 0}}

\boxed{ \green{ \tt \: \dfrac{x}{y}  &lt;  0 \implies \: x &gt; 0, \: y  &lt;  0 \: or \: x  &gt;  0, \:y &lt; 0}}

Attachments:
Similar questions