Math, asked by nasifkhan37, 1 year ago

If (6x2 - xy) : (2xy + y2) = 6 : 1, find x : y.​

Answers

Answered by brunoconti
6

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:

nasifkhan37: thank you so much
Answered by LovelyG
23

Answer:

\large{\underline{\boxed{\sf x:y = 2:3 \: \: or \: \: 3:2}}}

Step-by-step explanation:

Given that;

(6x² - xy) : (2xy + y²) = 6 : 1

We can write it as ;

 \sf  \frac{(6x {}^{2} - xy) }{(2xy + y {}^{2}) }  =  \frac{6}{1}  \\  \\ \bf on \: cross \: multiplying :  \\  \\ \sf \implies 6x {}^{2}  - xy = 6(2xy +  {y}^{2} ) \\  \\ \sf \implies 6x {}^{2}  - xy = 12xy + 6y {}^{2}  \\  \\\sf \implies  6x {}^{2}  + 6y {}^{2}  - xy - 12xy = 0 \\  \\ \sf \implies 6x {}^{2}  - 13xy + 6y {}^{2}  = 0 \\ \\   \sf \implies6x {}^{2}  - 9xy - 4xy +  6y {}^{2} = 0\\  \\ \sf \implies 2x(3x - 2y) - 3y(3x - 2y) = 0 \\  \\ \sf \implies (3x - 2y)(2x - 3y) = 0

Thus,

\sf \implies 3x = 2y \:  \: or \:  \: 2x = 3y \\  \\ \sf \implies  \frac{x}{y}  =  \frac{2}{3}  \:  \: or \:  \:  \frac{x}{y}  =  \frac{3}{2}

Hence, the ratio of x : y = 2 : 3 or 3 : 2


nasifkhan37: thank you so much
LovelyG: Welcome :)
Arjun2424: awesome mate
AbhijithPrakash: Great Answer!!
LovelyG: Thank you!
Similar questions