Math, asked by umangdubey40, 7 months ago

If 7.5p_(r)=7 p_(r-1). then find r.​

Attachments:

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{7(5_P_r)=7_P_{r-1}}

\underline{\textsf{To find:}}

\textsf{The value of r}

\underline{\textsf{Solution:}}

\textsf{Formula used:}

\boxed{\begin{minipage}{4cm}$\\\mathsf{\;\;\;\;n_P_r=\dfrac{n!}{(n-r)!}}\\\\\mathsf{\;\;\;\;n!=(n-1)!\,n}$\end{minipage}}

\textsf{Consider,}

\mathsf{7(5_P_r)=7_P_{r-1}}

\mathsf{7(\dfrac{5!}{(5-r)!})=\dfrac{7!}{(7-(r-1))!}}

\mathsf{7(\dfrac{5!}{(5-r)!})=\dfrac{5!{\times}6{\times}7}{(8-r)!}}

\mathsf{\dfrac{1}{(5-r)!}=\dfrac{6}{(5-r)!(6-r)(7-r)(8-r)}}

\mathsf{1=\dfrac{6}{(6-r)(7-r)(8-r)}}

\implies\mathsf{(8-r)(7-r)(6-r)=6}

\implies\mathsf{(8-r)(7-r)(6-r)=3{\times}2{\times}1}

\implies\mathsf{(8-r)(7-r)(6-r)=(8-5){\times}(7-5){\times}(6-5)}

\textsf{Comparing on bothsides, we get}

\implies\mathsf{r=5}

\underline{\textsf{Answer:}}

\textsf{The value of r is 5}

Similar questions