Math, asked by shantamDey5534, 1 year ago

if 7 sin^2 theta + 3 cos^2 theta=4 find the value of sec theta + cosec theta

Answers

Answered by abhishekgupta9434
18
sec theta. +cosec theta =5/2under root 2
Attachments:
Answered by LovelyG
70

Answer:

\large{\underline{\boxed{\sf \dfrac{2(1+\sqrt{3}) }{\sqrt{3}}}}}

Step-by-step explanation:

Given that ;

If 7 sin²θ + 3 cos²θ = 4. Find the value of Secθ + cosecθ.

Here we go;

7 \sin {}^{2} \theta + 3 \cos {}^{2}  \theta = 4

It can be written as -

4 \sin^{2} \theta  + 3 \sin^{2} \theta+ 3 \cos^{2}  \theta = 4 \\  \\ 4 \sin^{2} \theta  + 3(\sin^{2} \theta+ \cos^{2} \theta) = 4

We know that ;

sin²θ + cos²θ = 1, put the value in above.

 4 \sin^{2} \theta  + 3(1) = 4 \\  \\4 \sin^{2} \theta = 4 - 3 \\  \\4 \sin^{2} \theta =1 \\  \\ \sin^{2} \theta =  \frac{1}{4}  \\  \\ \sin \theta =  \pm  \sqrt{ \frac{1}{4} }  \\  \\ \sin \theta =  \pm  \frac{1}{2}

Taking the positive value.

\sin \theta =  \dfrac{1}{2}  =  \dfrac{ \text p}{ \text h}

Find base ;

 \text b =  \sqrt{ \text h {}^{2}  -  \text p {}^{2} }  \\  \\  \text b = \sqrt{(2) {}^{2}  - (1) {}^{2} }  \\  \\   \text b = \sqrt{4 - 1}  \\  \\  \text b = \sqrt{3}

Now, find the other required t-ratios.

 \sec  \theta  =  \frac{ \text h}{ \text b}  =  \frac{2}{ \sqrt{3} }  \\  \\  \cosec  \theta  =  \frac{ \text h}{ \text p}  =2

Now, we have to find ;

  \sec \theta +  \cosec \theta \\  \\  \implies  \frac{2}{ \sqrt{3} }  + 2 \\  \\ \implies  \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } \\  \\ \implies  \frac{2(1 +  \sqrt{3} )}{ \sqrt{3} }

Hence, the answer is found.

Similar questions