if 7 sin theta= 24 cos theta. find the value of 2 sin theta+ cos theta / 3 sin theta -4 cos theta
Answers
Answered by
0
Given :-
- 7 sin θ = 24 cos θ .
To Find :-
- (2 sin θ + cos θ) / (3 sin θ - 4 cos θ) = ?
Solution :-
→ 7 sin θ = 24 cos θ .
→ sin θ / cos θ = 24/7
→ tan θ = 24/7
now,
→ (2 sin θ + cos θ) / (3 sin θ - 4 cos θ)
dividing numerator and denominator by cos θ we get,
→ [(2sin θ/cos θ) + (cos θ/cos θ) / [(3sin θ/cos θ) - (4cos θ/cos θ)]
→ [2 tan θ + 1] / [3 tan θ - 4]
Putting value of tan θ now,
→ [(2*24/7) + 1] / [(3*24/7) - 4]
→ [(48/7) - 1] / [(72/7) - 4]
→ [(48 - 7)/7] / [(72 - 28)/7]
→ (41/7) / (44/7)
→ (41/7) * (7/44)
→ (41/44) (Ans.)
Learn more :-
It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
https://brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946
Similar questions