Math, asked by srjkusulia, 1 year ago

If 7 tan theta is equal to 4 find the value of 7 sin theta minus 3 cos theta by 7 sin theta plus 3 cos theta

Answers

Answered by Fairysolver
38

Step-by-step explanation:

hope this will help you.

Attachments:
Answered by Anonymous
7

Given:

7tanθ=4

To find:

(7sinθ-3cosθ) / (7sinθ+3cosθ)

Solution:

We know that,

tanθ=\frac{perpendicular}{base}

We have,

7tanθ=4

tanθ=\frac{4}{7}

So, we can say that perpendicular is 4units and base is 7units.

Now,

hypotenuse=\sqrt{(perpendicular)^2+(base)^2}

=\sqrt{4^2+7^2}

=\sqrt{16+49}

=\sqrt{65}units

We know that,

sinθ=\frac{perpendicular}{hypotenuse}

=\frac{4}{\sqrt{65} }

And we know,

cosθ=\frac{base}{hypotenuse}

=\frac{7}{\sqrt{65} }

Now evaluating the numerator,

7sinθ-3cosθ

=7×\frac{4}{\sqrt{65} }-4×\frac{7}{\sqrt{65} }

=\frac{28-21}{\sqrt{65} }

=\frac{7}{\sqrt{65} }

Now, evaluating the denominator,

7sinθ+3cosθ

=7×\frac{4}{\sqrt{65} }+4×\frac{7}{\sqrt{65} }

=\frac{28+21}{\sqrt{65} }

=\frac{49}{\sqrt{65} }

So,

(7sinθ-3cosθ) / (7sinθ+3cosθ)

=\frac{\frac{7}{\sqrt{65} } }{\frac{49}{\sqrt{65} } }

=\frac{7}{\sqrt{65} }×\frac{\sqrt{65} }{49}

=\frac{1}{7}

Hence, the required value of (7sinθ-3cosθ) / (7sinθ+3cosθ) is \frac{1}{7}.

Similar questions