Math, asked by Adityarocks7826, 1 year ago

If 7 times the 7th term of A.P is equal to 11 times the 11 term .prove that 18 term is equal to zero

Answers

Answered by devil1407
9

The seventh term = a7 = a + (n-1)d

                                     = a + ( 7 - 1) d

                                     = a + 6d  

Since, 7 times the 7th term is 7(a+6d)...(1)

The eleventh term = a11 = a+(n-1)d

                                        = a + (11-1)d

                                        = a + 10d

Since, 11 times the 11th term is 11(a+10d) ... (2)

As it is given that, 7 times of 7th term and 11 times of 11th term are equal.

Hence,

7(a+6d) = 11(a+10d)

Multiply inside braces..

7a + 42d = 11a + 110d

7a - 11a = 110d - 42d

-4a = 68d

a = - 17d .. (3)

Therefore,

The 18th term = a18 = a+(18 - 1)d

                                = a+ 17d -- (4)

Hence,

Substitute a = - 17d in 4th equation..

a + 17d = - 17d + 17d

           = 0

                                                                   Hence proved,..

===============


#Be Brainly..

Similar questions