Math, asked by harshgupta5, 1 year ago

If 7cosecA-3cotA=7, prove that 7cotA-3CosecA=3

Answers

Answered by ambikaahuja30
11
Here's the answer. I hope this helps.
Mark it as the brainliest. If you want to.
Attachments:

ambikaahuja30: I've done a really silly mistake but you can use the process to get the answer.
Answered by mysticd
8

Step-by-step explanation:

7cosecA-3cotA=7

\implies \frac{7}{sinA}-3\frac{cosA}{sinA}=7

\implies \frac{7-3cosA}{sinA}=7

\implies 7-3cosA=7sinA

\implies 7-7sinA=3cosA

\implies 7(1-sinA)=3cosA

\implies \frac{7}{3}=\frac{cosA}{1-sinA}\\=\frac{cosA(1+sinA)}{(1-sinA)(1+sinA)}\\=\frac{cosA(1+sinA)}{1^{2}-sin^{2}A}\\=\frac{cosA(1+sinA)}{cos^{2}A}\\=\frac{1+sinA}{cosA}

\implies 7cosA=3(1+sinA)

\implies 7cosA=3+3sinA

Divide each term by sinA ,we get

\implies \frac{7cosA}{sinA}=\frac{3}{sinA}+\frac{3sinA}{sinA}

\implies 7cotA=3cosecA+3

\implies 7cotA-3cosecA=3

•••♪

Similar questions