if 7sin^2x+3 cos^2x=4 show that tanx=1/√3
Answers
Answered by
1
Step-by-step explanation:
Step-by-step explanation:7sin^2x+3 cos^2x=4
=> 4 sin^2 x + 3sin2x+3 cos^2x=4
=> 4 sin^2 x + 3sin2x+3 cos^2x=4=>4 sin^2 x+3( sin^2 x + cos^2 x)=4
=> 4 sin^2 x + 3sin2x+3 cos^2x=4=>4 sin^2 x+3( sin^2 x + cos^2 x)=4=>4sin^2 x +3(1)=4. [••• sin^2x + cos^2 x =1]
=>4 sin^2 x +3=4
=>4sin^2 x=4-3
=>4 sin^2 x=1
=> sin^2 x=1/4
=> sin x=√(1/4)
therefore, sin x =1/2
but, sin 30°=1/2
then, sin x = sin x30°
therefore, x=30°
Then, tan 30°=1/3
Hence, it is proved
Similar questions