Math, asked by yashjunghare25, 1 year ago

if 7x+8y=2x+8y then x^2+y^2 upon x^2-y^2=?​

Answers

Answered by bsjaura22
0

Answer:

Given:

7x + y = 2x + 8y7x+y=2x+8y

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}ToFind:

\frac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } = ?x2−y2x2+y2=?

\green{\bold{\underline{\underline{Step-by-step\:explanation:}}}}Step−by−stepexplanation:

7x - 2x = 8y - y7x−2x=8y−y

\begin{lgathered}5x = 7y \\y = \frac{5x}{7}\end{lgathered}5x=7yy=75x

Now come to the question -

= \frac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } \:x2−y2x2+y2

Putting the value of y -

\begin{lgathered}= \frac{ {x}^{2} + ( { \frac{5x}{7}) }^{2} }{ {x}^{2} - ( { \frac{5x}{7} )}^{2} } \\ \\ = \frac{ {x}^{2} + \frac{25 {x}^{2} }{49} }{ {x}^{2} - \frac{25 {x}^{2} }{49} } \\ \\ = \frac{ \frac{49 {x}^{2} + 25 {x}^{2} }{49} }{ \frac{49 {x}^{2} - 25 {x}^{2} }{49} } \\ \\ = \frac{74 {x}^{2} }{49} \times \frac{49}{24 {x}^{2} } \\ \\ = \frac{74 {x}^{2} }{24 {x}^{2} } \\ \\ = \frac{74}{24}\end{lgathered}=x2−(75x)2x2+(75x)2=x2−4925x2x2+4925x2=4949x2−25x24949x2+25x2=4974x2×24x249=24x274x2=2474

\boxed{\red{\frac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } \: = \frac{37}{12} }}x2−y2x2+y2=1237

Similar questions