Math, asked by redent7835, 1 year ago

If 8Cr-7C3=7C2 find r

Answers

Answered by abhi178
20
given, ^8C_r-^7C_3=^7C_2

we know, ^nC_r=\frac{n!}{r!(n-r)!}
use this basic formula to get r,

^8C_r=\frac{8!}{r!(8-r)!}\\\\\\^7C_3=\frac{7!}{3!.4!}\\\\\\^7C_2=\frac{7!}{2!.5!}

\frac{8!}{r!(8-r)!}-\frac{7!}{3!.4!}=\frac{7!}{2!.5!}

\frac{8!}{r!(8-r)!}=\frac{7!}{3!.4!}+\frac{7!}{2!.5!}

\frac{8!}{r!(8-r)!}=7!\left(\frac{1}{3!.4!}+\frac{1}{2!.5!}\right)

\frac{8!}{r!(8-r)!}=7!\left(\frac{5}{3.2!5!}+\frac{1}{2!.5!}\right)

\frac{8!}{r!(8-r)!}=7!\left(\frac{8}{3.2!.5!}\right)

\frac{8!}{r!(8-r)!}=\frac{8.7!}{3!.5!}

\frac{8!}{r!.(8-r)!}=\frac{8!}{3!.(8-3)!}

compare LHS to RHS
so, r = 3
Similar questions