IF 9sinβ+40cosβ = 41 then find all the trigonometry ratio
Answers
Answer:
1. If Cos A = 9/41, find other trigonometric ratios of ∠A.
Solution:
Problems on Trigonometric Ratio
0Save
Let us draw a ∆ ABC in which ∠B = 90°.
Then cos θ = AB/AC = 9/41.
Let AB = 9k and AC = 41k, where k is positive.
By Pythagoras’ theorem, we get
AC2 = AB2 + BC2
⇒ BC2 = AC2 – AB2
⇒ BC2 = [(41k)2 – (9k)2]
⇒ BC2 = [1681k2 – 81k2]
⇒ BC2 = 1600k2
⇒ BC = √(1600k2)
⇒ BC = 40k
Therefore, sin A = BC/AC = 40k/41k = 40/41
cos A = AB/AC = = 9k/41k = 9/41
tan A = Sin A/Cos A = (40/41 × 41/9) = 40/9
csc A = 1/sin A = 41/40
sec A = 1/cos A = 41/9 and
cot A = 1/tan A = 9/40.
2. Show that the value of sin θ and cos θ cannot be more than 1.
Solution:
We know, in a right angle triangle the hypotenuse is the longest side.
Examples on Trigonometric Ratios
0Save
sin θ = perpendicular/hypotenuse = MP/OP < 1 since perpendicular cannot be greater than hypotenuse; sin θ cannot be more than 1.
Similarly, cos θ = base/hypotenuse = OM/OP < 1 since base cannot be greater than hypotenuse; cos θ cannot be more than 1.
9 sin θ + 40 cos θ = 41
⇒ 9 sin θ = 41 – 40 cos θ _(i)
Squaring both sides, we get
⇒ 81sin²θ = 1681+1600 cos²θ – 2(41) (40cos θ)
[∵ (a – b)² = a² + b² –2ab]
⇒ 81 (1– cos²θ) =1681+1600 cos²θ – 3280cosθ
⇒ 81 – 81cos²θ = 1681 +1600cos² θ – 3280 cosθ
⇒ 1681cos²θ –3280cos θ +1600 = 0
⇒ (41)² cos² θ – 2(41) (40cos θ) + (40)² = 0
⇒ (41cos θ – 40 )² = 0
cosθ = 40 / 41
Extrà Information :-